Assignment #2: Traffic Sign Classification

In this project we use a dataset from Kaggle which has 14
classes of traffic sign.
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Train: 2095 images
Test: 531 images

Hyperparameter

Epoch
Opimizer

Loss Function

Learning Rate

Metrics

10

Adam

Categorical Cross Entropy

0.0001

Accuracy



Assignment #2: Traffic Sign Classification

In this project we use a VGG19 pretrain model to fine tune on our dataset on 2 type comparation:

* Freeze all layers except the last 10 layers
* freeze all layers except the last 5 layers

#Load model

base_model = VGG19(weights = "imagenet", include_top=False, input_shape = (224,224, 3), pooling='avg')
base_model.summary ()

Classification Head

# use “get_layer” method to save the last layer of the network
last_layer = base_model.get_layer('global_average_pooling2d"')

last_output = last_layer.output

x = Dense(num_classes, activation='softmax', name='softmax') (last_output)

# instantiate a new_model using keras’s Model class
model_v1 = Model(inputs=base_model. input, outputs=x)



Assignment #2: Traffic Sign Classification

Fine Tune Level 1 (Keep only last 10 layers):

Accuracy

# iterate through its layers and lock them to make them not trainable with this code
for layer in base_model.layers[:-10]:
layer.trainable = False

base_model.summary ()

Total params: 20031566 (76.41 MB)

Trainable paramg: 16525838 (63|.04 MB)
Non-trainable pa : (13.37 MB)
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Fine Tune Level 2 (Keep only last 5 layers):

# Freeze lower 5

layers

for layer in base_model. layers[:-5]:
layer.trainable = False

Total params: 20031566 (76.41 MB)
Trainable params: |7086606 (27.¢3 MB)
Non-trainable params: (49.38 MB)

Model Accuracy
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Assignment #2: Traffic Sign Classification

Conclusion

* When freezing all layers except the last 10, the model achieved an accuracy of 75% at tuning level 1. However, by only
freezing all layers except the last 5, the accuracy improved significantly to 81% at tuning level 2.
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Testing loss: 0.6343

Testing accuracy: 0.7514

Predicted label

Testing loss: 0.3916

Testing accuracy: 0.8117




Conclusion

* Inthe first project, which is centered around sign language classification, the VGG16 model was employed. Within this context,
tuning Level 1 (freeze all layers except the last 10 layers) yielded better results than tuning Level 2 (freeze all layers except the
last 5 layers).

* Conversely, in the second project focusing on traffic sign classification, the VGG19 model was used, and here, tuning Level 2
outperformed tuning Level 1.
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