Assignment #2: Traffic Sign Classification

In this project we use a dataset from Kaggle which has 14
classes of traffic sign.

e Dataset Infomation:

ClassID Count

Name

—

o a0 A O N

10

11

12

13

9
0
11

12

13

356

94
124
104
113
208
120
100
110
121
259
1565
129
102

watch out for cars
Speed limit (5km/h)
Zebra Crossing

No horn

No Car

Speed limit (40km/h)
Bicycles crossing
keep Right

Dont Go Left

speed limit (80km/h)
No stopping

Speed limit (60km/h)
No entry

Dont overtake from Left

Speed limit (skm/h) Speed limit (40km/h) Speed limit (60km/h)

© o

|

300 4

N
u
o

Number of Images
= =
o w
o o

%]
o
L

o
I

200 A

speed limit (80km/h) Dont Go Left Dont overtake from Left
! i
B

No stopping

keep Right Bicycles crossing Zebra Crossing

Number of Images per Class in Training Data

—_ —_ P e & & — c £ 1l o o [=
T £ £ £ 8§ 8§ § 5§ £ 5 2 2 2 %
13 £ £ £ - - < = o @ @ = c
(=] o wn]]
- < = < o E o e o o =%
in © =) =} (6] H =z 2 a @ 4 <))
- < © @ - £ o = o (9] @ z
= bt = = c (9] ")
£ = =] S k) < 3 2 2 §
£ E E E o % s 2 %
he - = - £] 9 N
3 0% O3 g § a
o o @ 1] 3 E]
0 a a a =
[@ e
o
[a]

Class

Train: 2095 images
Test: 531 images

Hyperparameter

Epoch
Opimizer

Loss Function

Learning Rate

Metrics

10

Adam

Categorical Cross Entropy

0.0001

Accuracy

Assignment #2: Traffic Sign Classification

In this project we use a VGG19 pretrain model to fine tune on our dataset on 2 type comparation:

* Freeze all layers except the last 10 layers
* freeze all layers except the last 5 layers

#Load model

base_model = VGG19(weights = "imagenet", include_top=False, input_shape = (224,224, 3), pooling='avg')
base_model.summary ()

Classification Head

use “get_layer” method to save the last layer of the network
last_layer = base_model.get_layer('global_average_pooling2d"')

last_output = last_layer.output

x = Dense(num_classes, activation='softmax', name='softmax') (last_output)

instantiate a new_model using keras’s Model class
model_v1 = Model(inputs=base_model. input, outputs=x)

Assignment #2: Traffic Sign Classification

Fine Tune Level 1 (Keep only last 10 layers):

Accuracy

iterate through its layers and lock them to make them not trainable with this code
for layer in base_model.layers[:-10]:
layer.trainable = False

base_model.summary ()

Total params: 20031566 (76.41 MB)

Trainable paramg: 16525838 (63|.04 MB)
Non-trainable pa : (13.37 MB)

Model Loss

Model Accuracy

1.0
—— Train Loss
—— Validation Loss

0.8 A

0.6

/
0.4 1 —— Train Accuracy
—— Validation Accuracy

0 2 4 6 8
Epochs

Fine Tune Level 2 (Keep only last 5 layers):

Freeze lower 5

layers

for layer in base_model. layers[:-5]:
layer.trainable = False

Total params: 20031566 (76.41 MB)
Trainable params: |7086606 (27.¢3 MB)
Non-trainable params: (49.38 MB)

Model Accuracy

Model Loss

—— Train Loss
—— Validation Loss

1.0 |

0.9 A

0.8 A

0.7

0.6
—— Train Accuracy

0.5 —— Validation Accuracy

0 2 4 6 8

Epochs

Assignment #2: Traffic Sign Classification

Conclusion

* When freezing all layers except the last 10, the model achieved an accuracy of 75% at tuning level 1. However, by only
freezing all layers except the last 5, the accuracy improved significantly to 81% at tuning level 2.

Fine-Tune Level 1 (fix lower 10) Fine-Tune Level 2 (fix lower 5)

Confusion Matrix Confusion Matrix

Speed limit (5km/h)424 0 0 0 0 0 0 0 0 0 O 0 O O Speed limit (5km/h){24 0 0 0 0 0 0 0 0 0 0 0O 0 ©
) 60
Speed limit (40km/n) {0 B8] 0 0 0 0 0 1 1 0 0 0 0 0 70 speed limit (40kmyh) { o B 0 0 0 0 0 0 0 0 0 0 0 o
Speed limit (60km/h)410 0730 0 0 0 0 0 0 0 0 0 0 © speed limit (60km/h){ 0 030/ 0 0 0 0 0 0 0 O O O O
- 60
speed limit (80km/h){0 0 032 0 0 0 0 0 0 0 0 O O speed limit (80km/h){0 0 032 0 0 0 0 0 0 O 0 0 O 50
DontGo Left{ 0 0 0 0.0 000 00 000 s DontGoleft{0 0 © o.o 0 00 00 0 0 O
- Dont overtake fromLeft40 0 0 0 0 26 0 0 0 0 O O 7 O _ Dontovertake fromLeft{0 0 0 0 0[33/0 0 0 0 0 0 0 © 40
4 [
2 NoCar{0 0 0 0 0 01821 0 0 0 0 0 0O | 20 2 Nocar{0 0 0 0 O 02118 0 0 0 0 0 O
= | ©
g Nohom10 0 0 0 0 0 1[0 0 0 0 0 0 Y Nohon{0 0 0 0 0 0 2129 0 0 0 0 0 0 k30
keep Right10 0 0 0 0 0 0 028 0 0 0 O © k30 = keepRight{0 0 O 0 O 0 O 028 0 0 0 O O
{0 0 0 00O 00 002 0 0 0 O
watch out for cars watch outforcars{ 0 0 0 0 0 O 0 0 0126 0 0 0 0O | 20
Bicycles crossing10 0 0 0 0 0 0 0 0 029 0 0 0 20 Bicycles crossing{ 0 0 0 0 1 0 0 0O 0 0128 0 0 O
ZebraCrossing{0 0 0 0 0 0 O O O O 0 26 0O O Zebra Crossing {0 0 0 0 0 0 0 0 0 0 026 0 0
No stopping{ 0 0 0 0 14 0 0 0 0 0 0O 0 12 0 1o 7091010000000 lo 1o
No stopping
Noenty{0 0 0 0 9 0 0 0O O O . 0 0 3
—— — Lo Noentry{0 0 0 0 0O 0 O 0 |32 o- 0 0 13
P A Lo
£ £ £ £ G5 T 85 <5 5 £ £ € 5 - = = = & -)
EEEE- Y228 %3G 3¢ EEEcgE s 2oeorp
EE 22 8ES588¢5° EEEES 3028 g45 8¢
23 8 8 o z g 558 2 X ¥ X ¥ 2 g 8 o 5 4 8 a9
2 T T T E = ¢ 5 v oo o B3 339Vs=®z2aef 522
E=2 22 5y x 3 8 £ =T 2 e & g5 00wz
= E EE°TG® £ 29 E L2 22 5 g X 3 8 e e
s EE°E EeR EEEES £98°
83 8B g S @ - = = = £ S o N
H 2 O N
- N £333 ¢ s s
n oa e e a g 2 9 o %
8 e a8 e e
Predicted label 8

Testing loss: 0.6343

Testing accuracy: 0.7514

Predicted label

Testing loss: 0.3916

Testing accuracy: 0.8117

Conclusion

* Inthe first project, which is centered around sign language classification, the VGG16 model was employed. Within this context,
tuning Level 1 (freeze all layers except the last 10 layers) yielded better results than tuning Level 2 (freeze all layers except the
last 5 layers).

* Conversely, in the second project focusing on traffic sign classification, the VGG19 model was used, and here, tuning Level 2
outperformed tuning Level 1.

ST

Speed limit (skm/h) Speed limit (40km/h) Speed limit (60kmy/h) _speed limit (80km/h)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

