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Abstract— This study presented a personalized e-learning 
method utilizing an intelligent chatbot for course 
recommendations. By integrating Large Language Models 
(LLMs) with Retrieval-Augmented Generation (RAG), we 
developed a recommendation system that aligned with user 
learning preferences and goals. The system leveraged a pretrained 
embeddings model and vector databases to access a dataset of 
16,223 courses from 40 different subjects, sourced from platforms 
like edX and Coursera. We evaluated the chatbot's responses by 
analyzing query relevance and context consistency score matrices. 
The evaluation yielded an average score of 0.77 in both relevance 
and consistency metrics. We also conducted response evaluation 
through human surveys. The survey focused on response 
relevance, comprehensibility, readability, accuracy, and 
helpfulness of explanations, achieving high satisfaction ratings 
(4.10-4.42 out of 5.0), which provided a more comprehensive 
approach to evaluating our RAG responses. Finally, the chatbot 
was implemented as a Streamlit web application, enabling user 
interaction and feedback collection for future improvements. 
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I.  INTRODUCTION  
The educational landscape has evolved significantly, with e-

learning platforms providing widespread access to information 
[1]. However, students face many challenges in navigating 
through numerous courses to find options that match their 
requirements. The traditional approach requires users to search 
independently across multiple e-learning platforms—a process 
that is both overwhelming and time-consuming. While recent 
advances in Large Language Models (LLMs) can assist in 
course discovery, they may generate unreliable responses 
containing incorrect information or invalid links [2]. 

To address these challenges, we propose an intelligent e-
learning course recommendation chatbot application that 
employs retrieval augmentation generation techniques. Our 
implementation incorporates careful prompt engineering to 
enhance context relevance and query consistency. This paper 
details the design, implementation, and evaluation of a chatbot 
intended to transform how learners access online educational 

resources. Our methodology leverages recent advances in 
LLMs, incorporating the LangChain framework - an open-
source development framework that simplifies the creation of 
LLM-powered applications by providing reusable components 
and tools for common operations. LangChain enables 
developers to build complex chains of operations that can 
handle tasks like document processing, question-answering, 
and summarization with minimal effort.  

The system uses Retrieval-Augmented Generation (RAG) 
technique, and FAISS datastore to process user queries and 
deliver tailored course recommendations. It integrates web 
scraping for course information collection, data processing for 
embedding generation, and prompt engineering for 
personalized suggestions, creating a comprehensive solution 
that addresses learner needs beyond basic keyword matching. 

 
The main contributions of this study are as follows: 
• Novel RAG Implementation for Course 

Recommendations: This study presents the first 
application of Retrieval-Augmented Generation with 
LLMs for personalized course recommendations, 
utilizing a comprehensive dataset of 16,223 courses 
across 40 subject areas. 

• Optimized Technical Architecture: The system 
implements FAISS vector storage integrated with the 
'all-MiniLM-L6-v2' embedding model, enabling 
efficient and precise semantic matching between user 
queries and course content. 

• Empirical Validation: The system demonstrated robust 
performance metrics in both query relevance and 
context consistency. Student evaluation yielded high 
satisfaction ratings (4.10-4.42 out of 5.0) across 
multiple dimensions, including comprehensibility, 
accuracy, and helpfulness. 

• Practical Application: The implementation features a 
user-friendly chatbot interface developed using 
Streamlit, demonstrating the system's viability in 
educational settings. 
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II. RELATED WORK 
In recent years, Large Language Models (LLMs) have grown 

exponentially in capability and strength [3]. Organizations 
increasingly integrate these models into their operations to 
enhance decision-making and quality outcomes. To utilize 
LLMs with private datasets, a technique called Retrieval 
Augmented Generation (RAG) is often employed [4]. RAG is a 
process that combines data retrieval from a specific dataset as 
context with the generative capabilities of LLMs. This approach 
enables organizations to leverage the power of LLMs while 
incorporating their own private dataset. 

The integration of RAG with LLMs offers several benefits. 
First, it allows organizations to take advantage of the vast 
knowledge and language understanding capabilities of pre-
trained LLMs. Second, by incorporating private datasets, the 
generated output can be tailored to the specific domain and 
requirements of the organization. This customization enhances 

the accuracy and usefulness of the model's responses. 
Furthermore, RAG helps to address concerns related to data 
privacy and intellectual property [5]. By keeping the private 
dataset separate from the pre-trained LLM, organizations can 
maintain control over their sensitive information while still 
benefiting from the advanced natural language processing 
capabilities of the model.  

In [6] study, the authors review LangChain, a novel language 
processing model for enhanced PDF document interaction. 
They examine its capabilities, architecture, and applications, 
evaluating its potential to improve document analysis and its 
impact across various domains. In another study [7], the authors 
propose a Retrieval-Augmented Generation (RAG) approach to 
enhance large language models' ability to answer challenging 
science-based questions. They incorporate the Wikipedia6.5M 
dataset and combine vector similarity retrieval with the 
Platypus2-70B LLM to overcome data scarcity and improve 
STEM subject comprehension in limited computational settings. 

RAG has been successfully applied in various domains such 
as legal document analysis [6] and scientific question-
answering [7]. In this study, we present the first implementation 
of RAG specifically for e-learning course recommendations. 
We leveraged multiple advanced technologies: Hugging Face's 
'all-MiniLM-L6-v2' embedding model for semantic text 
representation, FAISS vector database for efficient similarity 
search [8], and OpenAI's GPT-4o-mini for response generation. 
We enhanced these technologies with optimized prompt 
engineering techniques to deliver high-precision course 
recommendations that accurately matched user queries. This 
combination enabled our system to effectively understand user 
requirements and retrieve relevant courses from our database. 

III. METHODOLOGY 
Below is our methodology for building our recommendation 

system. The overall pipeline process can be found in Fig. 1. 

A. Data Collecting 
To get our data, Selenium WebDriver was employed to 

automate the process of collecting course data from edX and 
Coursera platforms. Custom scraping scripts were developed to 
navigate through course listings and extract relevant 
information. The scraping process was designed with 

FIGURE 1. OVERALL PIPELINE OF THE COURSE RECOMMENDATION CHATBOT 

Input:  Topics (list of course topics to scrape) 
Output: CSV file containing course information 
 
1: function ScrapeCourses(topics) 
2:     webDriver ← InitializeWebDriver() 
3:     allCourses ← empty list 
4:       
5:     for each topic in topics do 
6:        totalPages ← GetTotalPages(webDriver, topic) 
7:           
8:        for pageNumber from 1 to totalPages do 
9:          courseURLs ← GetCourseURLs(webDriver, topic, 
pageNumber) 
10:    
11:         for each url in courseURLs do 
12:              courseInfo ← ExtractCourseInfo(webDriver, url) 
13:              allCourses.append(courseInfo) 
14:         end for 
15:         end for 
16:     end for 
17:      
18:     SaveToCSV(allCourses, "coursera_courses.csv") 
19:     webDriver.close() 
20: end function 

FIGURE 2. WEB SCRAPING ALGORITHM FOR COURSE DATA 
EXTRACTION 



appropriate delays to avoid overloading the servers. The scraped 
data includes course titles, sub-information, subjects, ratings, 
difficulty levels, institutions, course descriptions, learning 
objectives, syllabi, course URLs, and skills outcomes. We 
collected 16,223 courses from 40 different subjects which is an 
comprehensive amount and diverse subjects. The extraction 
algorithm can be found in Fig. 2. 

B. Text Embedding Process 
Text embedding is a conversion technique that transforms 

text into a dense vector embedding. This special number 
represents the pattern that allows the computer to understand it. 
We rely on a unified embedding process for both course content 
and user queries, utilizing the pre-trained Sentence Transformer 
model "all-MiniLM-L6-v2" [9].  The all-MiniLM-L6-v2 model 
is a popular, lightweight tool that transforms text into a list of 
384 numbers while preserving its meaning. For courses, we 
begin by cleaning the scraped data by removing duplicates to 
ensure consistency. We then combine relevant features such as 
title, subject, level, language, institution, learning outcomes, 
syllabus, and descriptions into a single text representation for 
each course. 

User queries undergo a similar transformation, with each 
query converted into a dense vector embedding using the same 
model. By employing identical embedding techniques for both 
courses and queries, we ensure they occupy the same vector 
space, enabling direct comparisons and facilitating accurate, 
semantically relevant recommendations. 

C. FAISS: Facebook AI Similarity Search 
All embedded courses were stored in a vector store called 

FAISS (Facebook AI Similarity Search). The Vector Store is the 
specialized database which used to store dense vectors. It is 

designed to store high-dimensional vectors which are 
representations of data, especially text. To enable efficient 
similarity searches and swift retrieval, we leverage FAISS 
(Facebook AI Similarity Search) to create a vector store for our 
course embeddings. FAISS, designed for efficient similarity 
search and clustering of dense vectors, excels at processing 
large datasets.  

 In our implementation, we store course embeddings along 
with metadata such as title, description, and URL in an FAISS 
index. This approach facilitates rapid similarity searches and 
quick retrieval of course information, capable of handling 
datasets of any size, including those exceeding available RAM. 
We save the created index locally, allowing for fast loading and 
querying in subsequent sessions without the need for 
recomputation.  

D. Prompt Template 
 Our recommendation process begins with a carefully crafted 
prompt template. In Fig. 3, The template is designed to combine 
retrieved course information, a structured recommendation 
format, and chat history. Its purpose is to guide the language 
model in analyzing user queries, selecting relevant courses, and 
providing detailed recommendations while maintaining a 
conversational tone. By structuring the input in this way, we 
ensure that the language model has all the necessary context to 
generate personalized and informative course recommendations. 

E. Conversation Memory 
To enhance personalization over time, we implement a 

ConversationSummaryBufferMemory. This component 
maintains context across multiple interactions, allowing the 
system to remember and refer back to previous conversations. 
By preserving key information from past exchanges, the system 
can provide more contextually relevant recommendations, 
taking into account the user's evolving interests and previous 
inquiries. This feature significantly improves the continuity and 
coherence of the conversation, making the interaction feel more 
natural and personalized. 

F. Large Language Model Processing 
The core of our recommendation system is powered by GPT-

4o-mini model. The process begins when a user's query is 
embedded via Sentence Transformer, allowing FAISS to 
retrieve relevant courses based on embedding similarity. These 
retrieved courses, along with the user's query and chat history, 
are formatted into a prompt template. The GPT-4o-mini model 
then processes this integrated information to generate natural, 
context-aware course recommendations that align with the 
user's interests. 

G. Streamlit Chatbot Interface 
For our chatbot interface, we leveraged Streamlit, an open-

source Python library that simplifies the creation of web 
applications. Streamlit provides a user-friendly framework for 
rapidly developing interactive and visually appealing interfaces 
without extensive web development experience. To build our 
chatbot, we utilized key Streamlit components such as 
chat_input() for user message input, chat_message() for 

As an AI course recommendation expert, provide 
personalized, high-quality suggestions based 
on the user's interests, goals, and 
background. 
 
Chat History: {chat_history} 
User Query: {question} 
Relevant Courses: {context} 
 
Response Guidelines: 
1. Tone: Warm, professional, and approachable. 
2. Analysis: Consider user's query, history, 
and educational needs. 
3. Recommendations: For each course, include: 
   - Title and institution 
   - Brief overview 
   - Skills to be gained 
   - Key topics 
   - Level, duration, language 
   - Ratings (if available) 
   - Course URL (if available) 
4. Personalization: Explain how courses align 
with user's interests and needs. 
Prioritize accuracy, relevance, and user-
centricity to help users make informed 
educational decisions. 
 
Recommendation: 

FIGURE 3. LARGE LANGUAGE MODEL PROMPT TEMPLATE 



displaying both user and bot messages, and session_state 
variable for managing conversation history. By following the 
streamlit tutorial in building the LLM chatbot application [10], 
we obtain a chatbot UI that is clean and easy to use. By 
combining Streamlit's powerful features with our RAG systems 
we were able to create a responsive, user-friendly chatbot 
interface that effectively showcases our course 
recommendation system as shown in Fig. 4. 

IV. CHATBOT EVALUDATION AND RESULTS 
Fig. 5 showcases the chatbot's response to a user's query 

about courses in machine learning for finance. The chatbot 
successfully recommended two relevant courses in this field. 
For each course, the chatbot provided comprehensive details 
including: 
• The Institution 
• A brief course overview 
• Skills students will acquire 
• Key topics covered 
• Course difficulty level 
• Language of instruction 
• A direct URL to the course page 

This structured presentation allows users to quickly compare 
the courses and access more information with a single click on 
the provided links. The chatbot's response was evaluated 
through both automated metrics and human assessment. 

A. Automated Metrics 
To evaluate our chatbot system's performance, we analyzed 

the relevance between user queries and generated responses 
using cosine similarity measurements. We created a diverse 
dataset of 71 queries covering various subject areas (examples 
shown in Table I).   

Each query was processed through our RAG system to 
generate recommendation responses. To quantify the semantic 
alignment between queries and responses, we calculated the 
cosine similarity between each query-response pair, allowing us 

Query Category 

I'm looking to enhance my leadership and 
organizational skills. Seeking courses in Business 
Management that cover strategic planning, team 
management, and operational efficiency. 

Business 
Management 

I want to learn programming from scratch. Looking for 
beginner courses in Python, Java, or C++. Programming 

I need to strengthen my understanding of data 
structures for better coding practices. Seeking courses 
that cover arrays, linked lists, trees, and graphs. 

Data 
Structures 

As an intermediate programmer, I'm looking to dive 
deep into machine learning for financial applications. 
Seeking advanced courses in Machine Learning and 
AI. 

Machine 
Learning 

I need to strengthen my statistical analysis skills for 
research. Seeking courses that cover probability, 
statistical inference, and regression analysis. 

Statistics 

I want to explore the laws of nature and physical 
phenomena. Seeking courses in Physics that cover 
mechanics, electromagnetism, and quantum physics. 

Physics FIGURE 5. SAMPLE CHATBOT RESPONSES AND 
RECOMMENDATIONS 

FIGURE 4. USER INTERFACE OF THE COURSE 
RECOMMENDATION CHATBOT 

TABLE I. EXAMPLES OF GENERATED QUERIES 



to assess how well the chatbot's responses matched the users' 
original questions. The similarity score for each query-response 
pair was computed using the following (1). 

 
cos(𝜃) = !	∙	$

‖!‖‖$‖
                          (1) 

 
Where A and B are the numerical vector representations of 

Query and Response. For context consistency, cosine similarity 
was also calculated between the retrieved context from the 
vector store and the chatbot's response. This metric evaluates 
how well the response aligns with the context used to generate 
the answer. 
 
 

Evaluation Metric Avg. Score 

Query Relevance Score 0.77 

Consistency Score 0.77 

 
Table II showed an average score of 0.77 for both relevance and 
consistency, demonstrating the chatbot's strong ability to 
provide relevant and contextually accurate responses. 

B. Human Assessment 

We conducted a human evaluation of the chatbot's responses 
through a survey that involved 30 students from our graduate  
school. The survey focused on five criteria: relevance, 
comprehensibility, readability, accuracy, and helpfulness. 
Participants rated each criterion on a scale from 1 to 5, and the 
results are shown in Fig. 6 and summarized in Table III.  
     These scores indicate that the chatbot performed well across 
most criteria. The ease of understanding (comprehensibility) 
received the highest average score of 4.42, followed by 
relevance of responses at 4.39. The readability enhancement 
through response format scored 4.26, while the helpfulness of 
explanations and accuracy of recommendations scored 4.19 and 
4.10 respectively. These results suggest that while the chatbot 
excels in delivering comprehensible and relevant responses, 
there might be room for improvement in the accuracy of its 
course recommendations. Nevertheless, all criteria received 
scores above 4.0, indicating strong overall performance across 
all evaluated aspects. 

Evaluation Metric Avg. Score 

Relevance of the chatbot’s response to the given query 4.39 

Ease of understanding the chatbot's response 4.42 

Enhancement of readability through response format 4.26 

Accuracy of the course recommendations provided 4.10 

Helpfulness of the explanation given for course 
recommendations 4.19 

TABLE III. HUMAN EVALUATION RESULTS 

TABLE II. AUTOMATED EVALUATION METRICS 

A. Relevance of Response to Query 

B. Ease of Understanding Response 

C. Response Format's Enhancement of Readability 

D. Accuracy of Course Recommendations 

E. Helpfulness of Course Recommendation Explanation 

FIGURE 6. STUDENT SURVEY RESPONSE ANALYSIS 



V. CONCLUSION 
This study leveraged the OpenAI GPT-4o-mini model to 

develop a course recommendation chatbot. Built with 
LangChain, the system integrates components like FAISS 
vector store, retrievers, prompt templates, Conversation Buffer 
Memory, and LLMChain. By employing Retrieval-Augmented 
Generation (RAG) and embedding vectors sourced from edX 
and Coursera course data, the chatbot delivers personalized 
course recommendations tailored to individual user needs.  

For evaluation, we conducted both human and automated 
assessments. The human evaluation metrics revealed that the 
chatbot consistently performed well across five key criteria: 
response relevance, comprehensibility, readability, accuracy, 
and helpfulness of explanations, achieving high satisfaction 
ratings (4.10-4.42 out of 5.0). For the automated evaluation, we 
focused on measuring context relevance and consistency. The 
analysis examined the relationships between queries, retrieved 
contexts, and chatbot responses, achieving an average similarity 
score of 0.77. 

In future work, we aim to explore alternative vector stores 
like ChromeBD and Pinecone, enable real-time dataset updates 
to incorporate newly added courses and develop a mobile app 
with advanced features. This study underscores the potential of 
integrating advanced language models with structured data 
retrieval to create intelligent educational resource 
recommendation systems. 
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